Phase Space Tomography

Diktys Stratakis

Institute for Research In Electronics and Applied Physics,
University of Maryland, College Park, MD 20742

UMER Course, USPAS 2008
Outline

1. Phase Space Definition
2. Transport Matrix Definition
3. History/Overview of Tomography
4. Tomography for Beams with Space Charge
5. Overview of Lab Exercise
Introduction to Beam Phase Space

- Beams are not perfect laminar!

- Information of the transverse velocity distribution is needed to quantify the quality of the beam
Introduction to Beam Phase Space

- Paraxial limit: \[p \approx p_z \]
 \[X' = \frac{dx}{dz} = \frac{p_x}{p_z} \approx \frac{p_x}{p} \]

- Phase space:

- Beam Emittance: useful measure of how far away the beam is from laminar
Example of Importance of Phase Space

- Initial distribution
- Downstream
Beam Transport Matrix

\[
\begin{pmatrix}
 r_0 \\
r'_0
\end{pmatrix}
= \begin{pmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{pmatrix}
\begin{pmatrix}
r_0 \\
r'_0
\end{pmatrix}
= \mathbf{M}
\begin{pmatrix}
r_0 \\
r'_0
\end{pmatrix}
\]

Transfer matrix of the element

Assumption: No Space Charge

\[
\prod_{i} M_i = \text{........} M_3 M_2 M_1
\]
Introduction to Tomography

- An object in n-dimensional space can be recovered from a sufficient number of projections onto (n-1)-dimensional space
Phase-Space Tomography

Question: How we can rotate the phase-space distribution?

- How we can get projections of Phase Space?
- How to account for Phase Space Stretching?
Phase Space Projections

Screen Image

Phase Space (at screen)

\[c(x) = \int \int \int f(x, x', y, y') dx \, dy \, dy' = \mu_\theta(x) \]

What is \(\theta \)?
Angles of Projections and Scaling Factors

\[
\begin{pmatrix}
x_1 \\
x_1'
\end{pmatrix} =
\begin{pmatrix}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_0'
\end{pmatrix} =
\begin{pmatrix}
x \\
x'
\end{pmatrix} =
\begin{pmatrix}
s_1 & 0 \\
\frac{\sqrt{s_1^2 s_2^2 - 1}}{s_1} & \frac{1}{s_1}
\end{pmatrix}
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_0'
\end{pmatrix}
\]

\[s_1 = \sqrt{m_{11}^2 + m_{12}^2}\]
\[s_2 = \sqrt{m_{21}^2 + m_{22}^2}\]

\[\theta = \tan^{-1}\left(\frac{m_{12}}{m_{11}}\right)\]

M: Transport Matrix

Transform Matrix

Rotation Matrix

McKee et al. NIMA (1995)
Stratakis et al., PRST-AB (2006)
Beams with Space-Charge (SC)

- **Motion:** \(\frac{d^2 x}{dz^2} = -\kappa_0 x + F_{SC} \)
- **SC Force:** \(F_{SC} = F_l + F_{nl} = \frac{K}{R(z)^2} x + F_{nl} \)
- **Linear Approximation:**
 \[
 \frac{d^2 x}{dz^2} = (-\kappa_0 + \frac{K}{R(z)^2})x = \kappa x
 \]
- **Problem:** For beams with SC beams \(\kappa \) depends on \(R \).
Beam radius is determined by:

\[R'' + \kappa R \frac{K}{R} - \frac{\varepsilon^2}{R^3} = 0 \]

\[K = \frac{qI}{2\pi\varepsilon_0 mv^3} \]

- a: rms beam radius
- \(K \): beam perveance
- \(\varepsilon \): rms beam emittance
- \(\kappa \): lens focusing function
Overview of Tomography Experiment

• **GOAL:** Measure the beam phase space and beam emittance by using Tomography
Overview of Tomography Experiment

- **BEAM DISTRIBUTIONS:**
 - One more “uniform beam”
 - One highly nonuniform
Experiment Configuration

- **Transport Line:**
 - 1 Solenoid
 - 2 drift Sections

\[M = M_{D2}M_S M_{D1} \]
Transport Matrix Calculation

- Run Code: `ScalF_RotA_Calc.m`
- Code is solving the envelope along the transport line
 \[R^* + \kappa R - \frac{K}{R} - \frac{\varepsilon^2}{R^3} = 0 \]
- Divide transport line at many hard edge elements and get the transport matrix for each step

\[
\kappa = (-\kappa_0 + \frac{K}{R(z)^2})
\]

- Net Transport Matrix: \[M = M_{i+2}M_{i+1}M_i \ldots \]
Beam Photo Collection

- Use the given currents and vary the strength of solenoid and save the beam photos on the screen.

- Note that photos are not centered.
Centering Photos and Image Analysis

- Run code PhotoProcessing.m

- Each image can be thought as a 2D matrix, G, where the elements $G(i,j)$ represent the intensity values at a given pixel.

- Beam Centroid: $x_c = \sum_i \sum_j i G(j,i) / I$
 $y_c = \sum_i \sum_j j G(j,i) / I$

- Photo Centering: $x_c \rightarrow x_c - (x_c - N/2)$
 $y_c \rightarrow y_c - (y_c - N/2)$
Beam Tomography

- Run Tomography.m
Phase Space Reconstruction
Beam Emittance

• Run **EmitCalc.m**. This code gives you the beam emittance but **WILL NOT** given to you. Its your homework!

• Beam Emittance $\epsilon_x = 4\sqrt{\langle x^2 \rangle < x'^2 > - < xx' >^2}$

\[
\langle x^2 \rangle = T^2 \left[\sum_{i=1}^{N} \sum_{j=1}^{N} i^2 M(j, i) \right] / I
\]

\[
\langle x'^2 \rangle = T^2 \left[\sum_{i=1}^{N} \sum_{j=1}^{N} j^2 M(j, i) \right] / I
\]

\[
\langle xx' \rangle = T^2 \left[\sum_{i=1}^{N} \sum_{j=1}^{N} (ij) M(j, i) \right] / I
\]

\[
\epsilon_x = \frac{4T^2}{I} \sqrt{\left[\sum_{i=1}^{N} \sum_{j=1}^{N} i^2 M(j, i) \right] \left[\sum_{i=1}^{N} \sum_{j=1}^{N} j^2 M(j, i) \right] - \left[\sum_{i=1}^{N} \sum_{j=1}^{N} (ij) M(j, i) \right]^2}
\]

T: mm/pixel
• Good Luck!
Tomography Example

Transport Matrix: \[M = M_D M_Q \]

Quadrupole Matrix: \[M_Q = \begin{pmatrix} \cos(\sqrt{\kappa L_1}) & \frac{1}{\sqrt{\kappa}} \sin(\sqrt{\kappa L_1}) \\ -\sqrt{\kappa} \sin(\sqrt{\kappa L_1}) & \cos(\sqrt{\kappa L_1}) \end{pmatrix} \]

Drift Matrix: \[M_D = \begin{pmatrix} 1 & L_2 \\ 0 & 1 \end{pmatrix} \]
Tomography Example

Transport Matrix:

\[
M_1 = \begin{pmatrix}
-L_2 \sqrt{\kappa_0} \sin(\sqrt{\kappa_0} L_1) + \cos(\sqrt{\kappa_0} L_1) & \frac{1}{\sqrt{\kappa_0}} \sin(\sqrt{\kappa_0} L_1) + L_2 \cos(\sqrt{\kappa_0} L_1) \\
-\sqrt{\kappa_0} \sin(\sqrt{\kappa_0} L_1) & \cos(\sqrt{\kappa_0} L_1)
\end{pmatrix}
\]

Rotation Angle:

\[
\theta = \tan^{-1}\left(\frac{m_{12}}{m_{11}}\right) = \tan^{-1}\left(\frac{\frac{1}{\sqrt{\kappa_0}} \sin(\sqrt{\kappa_0} L_1) + L_2 \cos(\sqrt{\kappa_0} L_1)}{-L_2 \sqrt{\kappa_0} \sin(\sqrt{\kappa_0} L_1) + \cos(\sqrt{\kappa_0} L_1)}\right)
\]

Scaling Factor:

\[
s = \sqrt{m_{11}^2 + m_{12}^2}
\]

\[
s = \sqrt{\left[\frac{1}{\sqrt{\kappa_0}} \sin(\sqrt{\kappa_0} L_1) + L_2 \cos(\sqrt{\kappa_0} L_1)\right]^2 + \left[-L_2 \sqrt{\kappa_0} \sin(\sqrt{\kappa_0} L_1) + \cos(\sqrt{\kappa_0} L_1)\right]^2}
\]
Tomography Example

\[g(x,y) \]

\[
M_1 = \begin{pmatrix}
-0.70 & 0.12 \\
-12.00 & 0.76 \\
\end{pmatrix}
\]

\[
M_1 = \begin{pmatrix}
0.40 & 0.14 \\
-4.20 & 0.92 \\
\end{pmatrix}
\]

\[
M_1 = \begin{pmatrix}
1.49 & 0.17 \\
3.48 & 1.06 \\
\end{pmatrix}
\]

\[c(x) \]

\[s = 0.71 \quad \theta = 169.7^\circ \]

\[s = 0.43 \quad \theta = 20.2^\circ \]

\[s = 1.50 \quad \theta = 6.4^\circ \]